超音波の伝搬現象について

超音波伝搬特性(音響特性)の分類に基づいた、超音波発振制御技術

超音波システム研究所は、
オリジナル超音波実験(対象物の超音波伝搬状態の測定解析)により、
以下の事項を確認し、様々な応用・コンサルティングに利用しています。

1)伝搬する音圧レベルは、対象の共振状態が主要因である
(共振現象は、対象の固有振動数の影響が大きいので、強度が重要になる)

2)伝搬する周波数は、対象の表面状態と端部が主要因である
(小さなバリ、キズ・・により高い周波数(高調波)の発生が起きるが
低周波の共振現象で高調波は減衰する)

3)最も重要な事項は、
対象の構造による、伝搬する超音波の変化である
(単純な構造は共振現象による振動モードの変化が発生し、
複雑な構造では、非線形現象による高調波の変化が発生する。
しかし、均一な構造の実現は難しいため、単純な構造と複雑な構造の各部分が
相互に影響した複雑な変化が起きる
従って、変化を測定し、各作用を解析評価することが重要になる

 

******

<超音波伝搬特性(音響特性)の分類>

1:線形型
2:非線形型
3:ミックス型
4:ダイナミック変動型
( 4-1:線形変動型  4-2:非線形変動型  4-3:ミックス変動型 )

この分類を、超音波利用目的に合わせて
発振制御条件(スイープ発振条件)として設定します。

環境・条件・・により
複数の発振を組み合わせる場合も同様ですが
相互作用に対する測定確認が不十分だと
ダイナミックな非線形現象は発生しません。

分類の詳細
1:線形型(キャビテーション主体型)
超音波の発振周波数に対して
伝搬状態の主要(最大エネルギー)周波数が
低調波(発振周波数の1/4、あるいは1/2)
から高調波(発振周波数の1倍、・・3倍)の範囲で
若干の変化がある状態

注:低調波(発振周波数の1/8)以下の場合
低周波の共振状態により、不安定な共振と干渉が発生し
安定した状態が実現しない(共振現象が発生し続ける)傾向になります

2:非線形型(音響流主体型)
超音波の発振周波数に対して
伝搬状態の主要(最大エネルギー)周波数が
高調波(発振周波数10倍以上)の範囲で
若干の変化がある状態

注:高調波は、超音波振動子、発振プローブ・・の
表面状態の工夫(特願2020-31017 超音波制御)により
発振周波数の100倍を実現することも可能です

3:ミックス型(キャビテーションと音響流の組み合わせ型)
超音波発振部材の設置方法や接触部材・・・の相互作用により
発振周波数に対して
伝搬状態の主要(最大エネルギー)周波数が
低調波(発振周波数の1/8,1/4、あるいは1/2)
から高調波(発振周波数の1倍、・・10倍)の範囲で
自然に発生する、大きな変化がある状態

 

コメント
上記の1,2,3は、基本的な伝搬状態ですが
振動現象が、安定して長時間同じ現象を続けるためには、各種制御・・工夫が必要です
上記の1,2,3は、一定の発振状態を継続すると
周波数の低下や超音波の減衰現象(低周波の共振現象)が発生し
超音波の利用効果は小さく、無くなっていきます
そのために、実用的には、変動型を利用することが必要です

4:変動型(各種制御による変化を利用するタイプ)

4-1:線形変動型
複数の超音波発振部材や発振制御・・を利用して
伝搬状態の主要(最大エネルギー)周波数が
低調波から高調波を、
目的の範囲(発振周波数の1/8~10倍程度)で
制御可能にした状態

4-2:非線形変動型
複数の超音波発振部材や発振制御・・を利用して
伝搬状態の主要(最大エネルギー)周波数が
低調波から高調波を、
目的の範囲(発振周波数の1/2~50倍程度)で
制御可能にした状態

4-3:ミックス変動型(ダイナミック変動型)
複数の超音波発振部材や発振制御・・の
音響特性や相互作用の確認に基づいて
伝搬状態の主要(最大エネルギー)周波数が
低調波から高調波を、
目的の範囲(発振周波数の1/16~100倍程度)で
制御可能にした状態

分類としては上記の通りですが、
実用的には、ミックス変動型(ダイナミック変動型)として
低調波から高調波を最適化する事が、超音波制御になります

<参考>

超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術
http://ultrasonic-labo.com/?p=1566

超音波プローブ
http://ultrasonic-labo.com/?p=11267

超音波伝搬現象の分類1
http://ultrasonic-labo.com/?p=10908

超音波伝搬現象の分類2
http://ultrasonic-labo.com/?p=17496

超音波伝搬現象の分類3
http://ultrasonic-labo.com/?p=17540

超音波の最適化技術1
http://ultrasonic-labo.com/?p=15226

超音波の最適化技術2
http://ultrasonic-labo.com/?p=16557

超音波制御技術
http://ultrasonic-labo.com/?p=16309

超音波プローブの発振制御による振動評価技術
http://ultrasonic-labo.com/?p=15285

超音波技術:多変量自己回帰モデルによるフィードバック解析
http://ultrasonic-labo.com/?p=15785

統計的な考え方を利用した超音波
http://ultrasonic-labo.com/?p=12202

超音波洗浄に関する非線形制御技術
http://ultrasonic-labo.com/?p=1497

超音波システム(音圧測定解析、発振制御)
http://ultrasonic-labo.com/?p=19422

メガヘルツ超音波の効果1
http://ultrasonic-labo.com/wp-content/uploads/adfb30ef89e6f5a76e9a04e70a0ca395.pdf

メガヘルツ超音波の効果2
http://ultrasonic-labo.com/wp-content/uploads/513b007f36fc8fb58a2b9c1f558d289c.pdf

表面残留応力の緩和処理技術0
http://ultrasonic-labo.com/wp-content/uploads/03bb44a2f578d71fd8d08cdc0a55a3a7.pdf

表面残留応力の緩和処理技術1
http://ultrasonic-labo.com/wp-content/uploads/9331da789c89d57b60089985daf25223.pdf

表面残留応力の緩和処理技術2
http://ultrasonic-labo.com/wp-content/uploads/21dec0bb4d122601d2edf8428a70f36d.pdf

表面残留応力の緩和処理技術3
http://ultrasonic-labo.com/wp-content/uploads/58ef187250e6b810f299dc1bf7bb0bc6.pdf

詳細に興味のある方は
超音波システム研究所にメールでお問い合わせください。

メールアドレス  info@ultrasonic-labo.com

 

コメントは停止中です。