脱気マイクロバブル発生液循環装置

<<脱気マイクロバブル発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、20μ以下のマイクロバブルが発生します。
上記が脱気マイクロバブル発生液循環装置の状態です

5)上記の脱気マイクロバブル発生液循環装置に対して
超音波を照射すると
マイクロバブルを超音波が分散・粉砕して
マイクロバブルの測定を行うと
ナノバブルの分布量がマイクロバブルの分布量より多くなります
上記の状態が、超音波を安定して制御可能にした状態です

以下基礎実験の様子です

適切な液循環とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します

https://youtu.be/Oq_dLh2QgS0

https://youtu.be/E61bW5Hj3vI

https://youtu.be/mRrqz_GoVVk

https://youtu.be/pH2VxZc9-OQ

マイクロバブルによる超音波(音響流)のダイナミック制御

https://youtu.be/hnJCnmDuVK0

https://youtu.be/4e8CAj1-vLE

https://youtu.be/FztjKNGN9Fo

https://youtu.be/gYjCKGI1He4

小型・脱気マイクロバブル発生液循環システム

超音波を効率よく利用するための
「液循環装置」です

目的に合わせた
液循環制御により
超音波の状態をコントロールできます

小型ギアポンプ

https://youtu.be/n2XlczKr4C4

https://youtu.be/dXMCfkoTeyc

https://youtu.be/DctFkgdilmk

https://youtu.be/X_SkCpWc2SE

https://youtu.be/BQIwrWoMYgU

超音波洗浄器

https://youtu.be/4t2w3cXonzk

https://youtu.be/GdMq_TrtPdY

https://youtu.be/v5H43K1023s

https://youtu.be/IOB20axtCfA

https://youtu.be/QC0lVlP21JE

https://youtu.be/4sL_z_cT3ME

https://youtu.be/pxMWREJyxSU

https://youtu.be/xQ56Ljswh3Y

***

https://youtu.be/Xot9NDQOtbQ

https://youtu.be/RxYTI_U_o5w

https://youtu.be/QHe7LLpPGRE

https://youtu.be/usuBeGbDST8

https://youtu.be/cOsFcLINLbg

https://youtu.be/9GpQJ6j8Rms

https://youtu.be/0ZWf0YyUKws

https://youtu.be/cZ3LN14TAvw

<脱気・マイクロバブル発生液循環システム>
超音波システム研究所は、
目的に合わせた効果的な超音波のダイナミック制御を実現する、
<脱気・マイクロバブル発生液循環システム>に関して
各種の音響特性の測定解析に基づいた組み合わせを利用することで、
超音波をコントロールする技術を開発しました。

超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています。
(材質は、樹脂・ステンレス・ガラス・・対応可能です)
2)水槽の設置は
1:専用部材を使用
2:固有振動と超音波周波数・出力の最適化を行っています。
(水槽の音響特性に合わせた対応を実施します)
3)超音波振動子は専用部材を利用して設置しています
(専用部材により、定在波、キャビテーション、音響流の
利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します。
(標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています。

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します。

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します。

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態確認は音圧測定解析(超音波テスター)で行います。

ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。

マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。

液循環により、以下の自動対応が実現しています。

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。

適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を取り入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。

この濃度分布の解決がマイクロバブルの効果です。

脱気・マイクロバブル発生液循環が有効な理由です。

注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。


上記の液循環状態に対して
超音波プローブによるメガヘルツの超音波発振制御を行うことで
超音波の非線形現象が幅広い周波数帯で発生するとともに
ダイナミックな超音波の変化を実現します。

液循環の流量・流速分布・・・を適切に設定することで
目的に合わせた、非線形現象を発生させることができます。

<<動画>>

https://youtu.be/glWfqnQyI0Q

https://youtu.be/WdACnNNV0yY

https://youtu.be/tFOenqyo7uk

https://youtu.be/9O2krcgXRIk

https://youtu.be/EaE296dCz6o

https://youtu.be/4jpEEy8yzlk

https://youtu.be/mFtPItaHuNE

***

https://youtu.be/CZxlkoQhdaw

https://youtu.be/O9nkPODVrY4

https://youtu.be/3EzonKbs_EQ

https://youtu.be/6rZVVMfg01U

https://youtu.be/lXMrmddNXXo

https://youtu.be/1fKyKd90JRg

https://youtu.be/pgO54mY7cFU

https://youtu.be/yfzzWgQmUYw

https://youtu.be/e85wAPOHlJA

上記の技術に関して、
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・によりトレードオフの関係が発生する場合があり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
非線形現象の制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
洗剤の使用や撹拌・・では、
通常の洗浄とは反対の設定を行う成功事例が多い傾向にあります)

超音波の伝播現象における「音響流」を利用する技術
http://ultrasonic-labo.com/?p=1410

<超音波のダイナミック制御技術>
http://ultrasonic-labo.com/?p=2301

超音波のダイナミック制御技術を開発
http://ultrasonic-labo.com/?p=2015

オリジナル技術(液循環)
http://ultrasonic-labo.com/?p=7658

<超音波のダイナミックシステム:液循環制御技術>
http://ultrasonic-labo.com/?p=7425

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

現状の超音波装置を改善する方法
http://ultrasonic-labo.com/?p=1323

超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した
「超音波制御」方法
http://ultrasonic-labo.com/?p=1753

小型ポンプによる「音響流の制御技術」
http://ultrasonic-labo.com/?p=7500

脱気マイクロバブル発生液循環システム追加の出張サービス
http://ultrasonic-labo.com/?p=2906

超音波洗浄機の<計測・解析・評価>(出張)サービス
http://ultrasonic-labo.com/?p=1934

超音波測定解析の推奨システムを製造販売
http://ultrasonic-labo.com/?p=1972

「脱気・マイクロバブル発生装置」を利用した超音波システム
http://ultrasonic-labo.com/?p=1996

超音波洗浄機の「流れとかたち・コンストラクタル法則」
http://ultrasonic-labo.com/?p=1779

超音波専用水槽の設計・製造技術
http://ultrasonic-labo.com/?p=1439

超音波とマイクロバブルによる表面改質(応力緩和)技術
http://ultrasonic-labo.com/?p=5413

超音波による金属・樹脂表面の表面改質技術
http://ultrasonic-labo.com/?p=1004

超音波による「金属部品のエッジ処理」技術
http://ultrasonic-labo.com/?p=2894

超音波の「音響流」制御による「表面改質技術」
http://ultrasonic-labo.com/?p=2047

「超音波の非線形現象」を目的に合わせてコントロールする技術
http://ultrasonic-labo.com/?p=2843

超音波資料
http://ultrasonic-labo.com/?p=1905

複数の異なる「超音波振動子」を同時に照射するシステム
http://ultrasonic-labo.com/?p=1224

3種類の異なる周波数の「超音波振動子」を利用する技術
http://ultrasonic-labo.com/?p=3815

2種類の異なる「超音波振動子」を同時に照射するシステム
http://ultrasonic-labo.com/?p=2450

対象物の振動モードに合わせた、超音波制御技術
http://ultrasonic-labo.com/?p=1131

音と超音波の組み合わせ
http://ultrasonic-labo.com/?p=14411

音と超音波の組み合わせ技術
http://ultrasonic-labo.com/?p=12463

音と超音波の組み合わせによる、超音波システム
http://ultrasonic-labo.com/?p=7706

超音波洗浄に関する非線形制御技術
http://ultrasonic-labo.com/?p=1497

表面弾性波を利用した超音波制御技術
http://ultrasonic-labo.com/?p=14311

超音波プローブによる非線形伝搬制御技術
http://ultrasonic-labo.com/?p=9798

超音波の非線形現象
http://ultrasonic-labo.com/?p=2843

統計的な考え方を利用した超音波
http://ultrasonic-labo.com/?p=12202

超音波の非線形振動
http://ultrasonic-labo.com/?p=13908

超音波<測定・解析>システム
http://ultrasonic-labo.com/?p=1000

表面検査対応超音波プローブ
http://ultrasonic-labo.com/?p=1557

超音波システムの開発技術
http://ultrasonic-labo.com/?p=1522

超音波測定解析の推奨システムを製造販売
http://ultrasonic-labo.com/?p=1972

超音波発振・計測・解析システム(超音波テスター)
http://ultrasonic-labo.com/?p=7662

オリジナル超音波システム
http://ultrasonic-labo.com/?p=9894

超音波プローブの<発振制御>技術
http://ultrasonic-labo.com/?p=1590

<樹脂容器>を利用した超音波制御
http://ultrasonic-labo.com/?p=1484

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

<樹脂の音響特性>を利用した超音波システム
http://ultrasonic-labo.com/?p=7563

超音波を利用した「表面弾性波の計測技術」
http://ultrasonic-labo.com/?p=1184

超音波振動子の改良による、超音波制御技術
http://ultrasonic-labo.com/?p=9865

オリジナル技術(音圧測定解析)
http://ultrasonic-labo.com/?p=7662

オリジナル技術リスト
http://ultrasonic-labo.com/?p=10177

上記の技術について
「超音波コンサルティング」対応します


マイクロバブルによる
超音波(キャビテーションと音響流)の
ダイナミック制御・非線形制御

<<超音波のコントロール>>

超音波システム研究所は、
目的に合わせた効果的な超音波のダイナミック制御を実現する、
<脱気・マイクロバブル発生液循環システム>に関して
音圧データの測定解析に基づいた「超音波モデル(注)」により
超音波の非線形現象をコントロールする技術を開発しました。

注:< 超音波のMonoid(モノイドの圏)モデル >

基本的な超音波発振による現象全体をRing(環の圏)として、
キャビテーション・・による(発振周波数を主体とした)現象を
「アーベル群の圏」
加速度・音響流・・による(伝搬周波数の変化を主体とした)現象を
「Monoid(0元をもつ乗法の一元体)」
とするモデルを開発しました。

<< 超音波の三角化されたカテゴリーモデルによる制御 >>

キャビテーションと音響流による現象について
三角化された加法的カテゴリーモデルにより
制御パラメータ(流れ・表面弾性波、出力・パワー、周波数・発振)を
スペクトル系列のコホモロジーで、最適化します。

https://youtu.be/u302-jSex7Y

https://youtu.be/lmxv_dcVrXw

https://youtu.be/GJtg_jXYWbg

https://youtu.be/SyD7yT7v1_w

https://youtu.be/kej5UiVZffI

https://youtu.be/MuM6jv6KH1s

超音波攪拌(乳化・分散・粉砕)技術
http://ultrasonic-labo.com/?p=3920

超音波を利用した、「ナノテクノロジー」の研究・開発装置
http://ultrasonic-labo.com/?p=2195

アルミ箔の超音波分散
http://ultrasonic-labo.com/?p=5550

磁性・磁気と超音波(Ultrasonic and magnetic)
http://ultrasonic-labo.com/?p=3896

コンサルティング対応として
上記のモデルを適切に設定することで
以下の技術を実現します。
1)ジャグリング定理を応用した「超音波制御」技術
2)音色と超音波・音と超音波の組み合わせ制御技術
3)「脱気・マイクロバブル発生装置」の利用技術
4)超音波機器の<計測・解析・評価>技術

超音波コンサルティング
http://ultrasonic-labo.com/?p=2187

超音波コンサルティング
http://ultrasonic-labo.com/?p=2295

超音波装置の最適化技術をコンサルティング提供
http://ultrasonic-labo.com/?p=1401


 ***

コメントは停止中です。