超音波(キャビテーション・音響流)の分類

超音波(キャビテーション・音響流)の分類

超音波システム研究所(所在地:東京都八王子市)は、
超音波伝搬状態の測定データを
バイスペクトル解析することで、
キャビテーションと加速度の効果に関する分類方法を開発しました。

今回開発した分類に関する方法は、
超音波の伝搬状態に関する
主要となる周波数(パワースペクトル)の
ダイナミック特性(非線形現象の変化)により
キャビテーションと加速度の効果を推定します。

これまでのデータ解析から
効果的な利用方法を
以下のような
4つのタイプに分類することができました。

1:キャビテーション主体型
2:音響流主体型
3:ミックス型
4:変動型

上記の各タイプに基づいた
装置開発・制御設定・・・
成功事例が多数あります。

特に、
安定性・変化の状態・・・に関して
周波数成分による詳細な分類により、
目的と効果に対する、効率のよい
各種条件の設定・調整が可能になりました。

さらに、洗浄に関しては
汚れの特性やバラツキに関する情報が得られにくいため
このような分類をベースに実験確認することで
効果的な超音波制御が、実現します。

この分類の本質的なアイデアは、
超音波による定在波の特徴を、抽象代数学の
「導来関手」に適応させるということです。

抽象的ですが
超音波の伝搬状態を計測解析するなかで
定在波に関する的確な対応・制御事例から
時間経過とともに変化する状態を捉えるために
「導来関手」とスペクトルシーケンスの関係を
キャビテーションの強さをパラメーターにした
複体の変化により分類することにしました。

なお、超音波システム研究所の「非線形制御技術」は、
この方法による、
具体的な技術(例 超音波制御システム)として対応しています。

応用技術として
非線形性の発生状態に関する研究開発を進めています。
「超音波利用の最も大きな効果が、非線形状態の変化にある」
という考え方が一歩進んだと考えています。

 

参考

https://youtu.be/nFMLh9Dp__0

https://youtu.be/kWrDjXrpDWQ

https://youtu.be/7EVNT1nWhzw

https://youtu.be/KXf1ngEBcIg

https://youtu.be/CZrHDt5MEwM

https://youtu.be/aVVH6WISqFY

https://youtu.be/m_0lKfyzvtg

https://youtu.be/_LMmrZqkTAg

https://youtu.be/pUA3Zl6hgRA

https://youtu.be/bG8c8CHAgV4

https://youtu.be/Hc2k4APMpxg

https://youtu.be/ulzUcfK5sdw

https://youtu.be/8Cp3eLUPrfY

https://youtu.be/K7ucG37SGis

https://youtu.be/yM5fHiXhJ9c

https://youtu.be/RWOyx7x4uMU

https://youtu.be/0DhM7UKUv2E

https://youtu.be/9E50F2sp15Q

https://youtu.be/6t9sGXlu8h0

https://youtu.be/Y2-kE_gl2xg

https://youtu.be/VVY3HpWUBi4

https://youtu.be/12QTr9t8UYM

https://youtu.be/3BkLcbv5tGM

https://youtu.be/8d3HWESGHP8

https://youtu.be/bqWROAODJbs

https://youtu.be/g12yB4cbx4Y

https://youtu.be/cMwXC8Ac6TQ

なお、今回の技術をコンサルティング事業として、
展開・対応しています。

参考

超音波の代数モデルによる制御技術
http://ultrasonic-labo.com/?p=1311

超音波発振による相互作用
http://ultrasonic-labo.com/?p=17204

超音波と表面弾性波
http://ultrasonic-labo.com/?p=14264

ファインバブルを利用した超音波洗浄機
http://ultrasonic-labo.com/?p=11902

超音波と間接容器による、ナノレベルの攪拌技術
http://ultrasonic-labo.com/?p=15865

メガヘルツの超音波発振制御プローブ
http://ultrasonic-labo.com/?p=14570

超音波の伝搬状態を利用した部品検査技術
http://ultrasonic-labo.com/?p=3842

音と超音波の組み合わせ技術
http://ultrasonic-labo.com/?p=12463

非線形振動現象をコントロールする超音波技術
http://ultrasonic-labo.com/?p=15147

超音波プローブの発振制御による振動評価技術
http://ultrasonic-labo.com/?p=15285

新しい超音波制御技術
http://ultrasonic-labo.com/?p=15781

超音波水槽のダイナミック液循環システム
http://ultrasonic-labo.com/?p=14869

表面弾性波を利用した超音波制御技術
http://ultrasonic-labo.com/?p=14311

超音波の音圧測定解析システム「超音波テスターNA」
http://ultrasonic-labo.com/?p=16120

超音波とマイクロバブルによる表面改質(応力緩和)技術
http://ultrasonic-labo.com/?p=5413

現状の超音波洗浄機を改良する方法
http://ultrasonic-labo.com/?p=16603

流れと音と形の観察:コンストラクタル法則
http://ultrasonic-labo.com/?p=7302

超音波出力の最適化技術1
http://ultrasonic-labo.com/?p=15226

超音波技術:多変量自己回帰モデルによるフィードバック解析
http://ultrasonic-labo.com/?p=15785

超音波洗浄ラインの超音波伝搬特性を解析・評価する技術
http://ultrasonic-labo.com/?p=2878

超音波洗浄機の音圧計測
http://ultrasonic-labo.com/?p=16509

<<超音波の音圧測定・解析 No.2>>

1)時系列データに関して、
多変量自己回帰モデルによるフィードバック解析により
測定データの統計的な性質(超音波の安定性・変化)について
解析評価します

2)超音波発振による、発振部が発振による影響を
インパルス応答特性・自己相関の解析により
対象物の表面状態・・に関して
超音波振動現象の相互作用として解析評価します

3)発振と対象物(洗浄物、洗浄液、水槽・・)の相互作用を
パワー寄与率の解析により評価します

4)超音波の利用(洗浄・加工・攪拌・・)に関して
超音波効果の主要因である対象物(表面弾性波の伝搬)
あるいは対象液に伝搬する超音波の
非線形(バイスペクトル解析結果)現象により
超音波のダイナミック特性を解析評価します

この解析方法は、
複雑な超音波振動のダイナミック特性を
時系列データの解析手法により、
超音波の測定データに適応させる
これまでの経験と実績に基づいて実現しています。

<<考え方>>
超音波利用に関して、
超音波振動のダイナミック特性を把握することが
最も重要で、このダイナミック特性をコントロールすることが
超音波利用技術だと考えています

超音波伝搬現象の分類
http://ultrasonic-labo.com/?p=10908

超音波の最適化技術2
http://ultrasonic-labo.com/?p=16557

超音波制御技術
http://ultrasonic-labo.com/?p=16309

超音波洗浄について
http://ultrasonic-labo.com/?p=15233

超音波を利用した「振動計測技術」
http://ultrasonic-labo.com/?p=16046

モノイド圏モデルを利用した超音波制御技術
http://ultrasonic-labo.com/?p=9692

超音波利用実績の公開
http://ultrasonic-labo.com/?p=13404

 

超音波の代数モデルによる制御技術
http://ultrasonic-labo.com/?p=1311

超音波発振による相互作用
http://ultrasonic-labo.com/?p=17204

超音波と表面弾性波
http://ultrasonic-labo.com/?p=14264

 

 

ファインバブルを利用した超音波洗浄機
http://ultrasonic-labo.com/?p=11902

超音波と間接容器による、ナノレベルの攪拌技術
http://ultrasonic-labo.com/?p=15865

メガヘルツの超音波発振制御プローブ
http://ultrasonic-labo.com/?p=14570

<<超音波の相互作用::確認実験>>

https://youtu.be/yHVzZTtXC9o

https://youtu.be/rF4zQ0aXKUw

https://youtu.be/8-NCyOil_yg

https://youtu.be/ThpOUZcAe94

https://youtu.be/17_Ja7YU8So

https://youtu.be/XlFsnguetG0

https://youtu.be/deBRTKPNJiY

https://youtu.be/tYAdexPlb04

https://youtu.be/cD6yc1-fm8M

https://youtu.be/JZkUGnZ5BLI

https://youtu.be/eZe7lJ5k1ec

https://youtu.be/zikNcfNCUz8

https://youtu.be/_pwt-PfefIY

https://youtu.be/uyh2VsBO5vw

https://youtu.be/ntSBevvRc6A

https://youtu.be/AfW8eXKYM48

https://youtu.be/NGwNhsDqXH8

https://youtu.be/RhlvbM1vmLY

https://youtu.be/r60lco3uz1k

https://youtu.be/Qyc-3KGrk8o

https://youtu.be/Yd0SKZIMzEQ

https://youtu.be/8NUb3l6cUgc

2008. 8 超音波システム研究所 設立
・・・
2012. 1 超音波計測・解析システム(超音波テスターNA)製造販売開始
・・・・
2015. 3 超音波計測・発振・解析・制御装置開発
2016. 2 超音波とマイクロバブルによる「めっき処理対応技術」開発
2016. 8 めっき処理対応コンサルティング開始
2017. 1 もの作り(技術開発)に関するコンサルティング対応開始
2017. 6 超音波の応用に効果的な<樹脂>を公開
2018.10 メガヘルツの超音波発振プローブを開発
2019. 1 メガヘルツの超音波発振プローブのサンプル提供を開始
2019. 4 メガヘルツの超音波発振プローブの正式製造・販売を開始
2019. 9 超音波プローブを利用した「音響流」制御技術を開発
2020. 2 超音波発振制御(特許申請)
2020. 3 超音波溶接(特許申請)
2020. 4 超音波めっき(特許申請)
2020. 4 超音波加工(特許申請)
2020. 5 流水式超音波洗浄機(特許申請)

コメントは停止中です。