表面弾性波の非線形振動現象を利用した
スイープ発振の組み合わせによる
超音波の発振制御技術を開発しました。
複数の超音波発振制御プローブにより、
利用目的と相互作用の測定・解析確認に基づいた
スイープ発振の条件設定を行います。
対象物や水槽、治工具・・の固有振動数や
システムの振動系似合わせた、
低周波の共振現象を利用することで
30W程度の出力でも
3000-5000リットルの水槽内に
高い音圧を伝搬することが可能になります。
ダイナミックな変化として、同時に、
1MHzの発振に対する
10次、30次、100次・・の高調波の発生も実現出来ます。
ポイントは、音圧データの測定・解析に基づいた
システムのダイナミックな振動特性を評価することです。
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認(注)しました。
注:
非線形特性(音響流のダイナミック特性)
応答特性
ゆらぎの特性
相互作用による影響
統計数理の考え方を参考に
対象物の音響特性・表面弾性波を考慮した
オリジナル測定・解析手法を開発することで
振動現象に関する、詳細な各種効果の関係性について
新しい技術として開発しました。
詳細な、スイープ発振・・・の設定条件は
超音波プローブや発振機器の特性も影響するため
実験確認に基づいて決定します。
![](http://ultrasonic-labo.com/wp-content/uploads/IMG_47ss.jpg)
その結果、
超音波の伝搬状態と対象物の表面について
新しい非線形パラメータが大変有効である事例が増えています。
複数の超音波発振・液循環・・・各種制御の組み合わせは、
以下の項目を目的に合わせて最適化します。
1)線形現象と非線形現象
2)相互作用と各種部材の音響特性
3)音と超音波と表面弾性波
4)低周波と高周波(高調波と低調波)
5)発振波形と出力バランス
6)発振制御と共振現象(オリジナル非線形共振現象(注1))
・・・
上記について
音圧測定データに基づいた
統計数理モデル(スペクトルシーケンス (注2))により
表面弾性波の新しい評価方法で最適化します。
(注1)オリジナル非線形共振現象
オリジナル発振制御により発生する高次の高調波を
ダイナミックな時間経過の変化で発生する共振現象により
高い振幅で高い周波数を実現させたことで起こる
超音波振動の共振現象
(注2)超音波の変化を、抽象代数の圏論やコホモロジーの
スペクトルシーケンスに適応させるといった
オリジナル方法を利用した表現(統計数理モデル)
モノイドの圏
http://ultrasonic-labo.com/?p=1311
超音波伝搬現象の分類1
http://ultrasonic-labo.com/?p=10908
超音波伝搬現象の分類2
http://ultrasonic-labo.com/?p=17496
超音波伝搬現象の分類3
http://ultrasonic-labo.com/?p=17540
超音波の最適化技術1
http://ultrasonic-labo.com/?p=15226
超音波の最適化技術2
http://ultrasonic-labo.com/?p=16557
<<実験動画>>
![](http://ultrasonic-labo.com/wp-content/uploads/IMG_2502.jpg)
超音波実験(アルミ製コカコーラ容器)
***非線形発振プローブ実験***
![](http://ultrasonic-labo.com/wp-content/uploads/IMG_7822-1.jpg)
![](http://ultrasonic-labo.com/wp-content/uploads/IMG_6795.jpg)
<<< 超音波技術 >>>
超音波プローブによる非線形伝搬制御技術
http://ultrasonic-labo.com/?p=9798
超音波の発振・制御・解析技術による部品検査技術を開発
http://ultrasonic-labo.com/?p=2104
超音波の応答特性を利用した、表面検査技術
http://ultrasonic-labo.com/?p=10027
表面弾性波を利用した超音波制御技術
http://ultrasonic-labo.com/?p=14311
メガヘルツの超音波を利用する超音波システム技術
http://ultrasonic-labo.com/?p=14350
音と超音波の組み合わせ
http://ultrasonic-labo.com/?p=14411
![](http://ultrasonic-labo.com/wp-content/uploads/IMG_6798.jpg)
超音波の非線形振動
http://ultrasonic-labo.com/?p=13908
オリジナル技術(音圧測定解析)
http://ultrasonic-labo.com/?p=7662
オリジナル超音波プローブ
http://ultrasonic-labo.com/?p=8163
メガヘルツの超音波発振制御プローブ
http://ultrasonic-labo.com/?p=14808
超音波の発振・制御技術を開発
http://ultrasonic-labo.com/?p=1915
複数の超音波発振制御技術
http://ultrasonic-labo.com/?p=15848
超音波発振による相互作用
http://ultrasonic-labo.com/?p=17204
超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術
http://ultrasonic-labo.com/?p=1566
超音波制御技術
http://ultrasonic-labo.com/?p=16309
メガヘルツの超音波発振制御プローブ
http://ultrasonic-labo.com/?p=14570
超音波の音圧測定解析システム(オシロスコープ100MHzタイプ)
http://ultrasonic-labo.com/?p=17972
超音波の音圧測定解析システム「超音波テスターNA」
http://ultrasonic-labo.com/?p=16120
超音波の非線形現象をコントロールする技術
http://ultrasonic-labo.com/?p=14878
超音波洗浄器による<メガヘルツの超音波>技術を開発
http://ultrasonic-labo.com/?p=1879
超音波技術:多変量自己回帰モデルによるフィードバック解析
http://ultrasonic-labo.com/?p=15785
超音波プローブ
http://ultrasonic-labo.com/?p=11267
超音波発振システム(1MHz、20MHz)
http://ultrasonic-labo.com/?p=18817
超音波プローブ(音圧測定・非線形振動解析)
http://ultrasonic-labo.com/?p=1263
超音波システム(音圧測定解析、発振制御)
http://ultrasonic-labo.com/?p=19422
複数の超音波スイープ発振制御技術を開発
http://ultrasonic-labo.com/?p=1915
超音波(キャビテーション・音響流)の分類
http://ultrasonic-labo.com/?p=17231
超音波伝搬現象の分類1
http://ultrasonic-labo.com/?p=10908
超音波伝搬現象の分類2
http://ultrasonic-labo.com/?p=17496
超音波伝搬現象の分類3
http://ultrasonic-labo.com/?p=17540
http://ultrasonic-labo.com/?p=10908
非線形共振型超音波発振プローブ 実験動画
http://ultrasonic-labo.com/?p=15065
複数の超音波スイープ発振制御技術を開発
http://ultrasonic-labo.com/?p=1915
超音波システムを利用した「超音波シャワー」技術
http://ultrasonic-labo.com/?p=3735
http://ultrasonic-labo.com/?p=5267
超音波とファインバブルを利用した「めっき処理」技術
http://ultrasonic-labo.com/?p=18093
超音波の音圧測定解析に基づいた、超音波伝搬現象の分類
http://ultrasonic-labo.com/?p=10013
メガヘルツ超音波の効果1
http://ultrasonic-labo.com/wp-content/uploads/adfb30ef89e6f5a76e9a04e70a0ca395.pdf
メガヘルツ超音波の効果2
http://ultrasonic-labo.com/wp-content/uploads/513b007f36fc8fb58a2b9c1f558d289c.pdf