超音波のダイナミック制御技術を開発

超音波のダイナミック制御技術を開発

超音波システム研究所は、
目的に合わせた効果的な超音波のダイナミック制御を実現する、
<脱気・マイクロバブル発生液循環システム>に関して
各種の音響特性の測定解析に基づいた組み合わせを利用することで、
超音波をコントロールする技術を開発しました。


超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています。
(材質は、樹脂・ステンレス・ガラス・・対応可能です)
2)水槽の設置は
1:専用部材を使用
2:固有振動と超音波周波数・出力の最適化を行っています。
(水槽の音響特性に合わせた対応を実施します)
3)超音波振動子は専用部材を利用して設置しています
(専用部材により、定在波、キャビテーション、音響流の
利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します。
(標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています。

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します。

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します。

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態確認は音圧測定解析(超音波テスター)で行います。


ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。

マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。

液循環により、以下の自動対応が実現しています。

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。

適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を取り入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。

この濃度分布の解決がマイクロバブルの効果です。

脱気・マイクロバブル発生液循環が有効な理由です。

注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。

上記の液循環状態に対して
超音波プローブによるメガヘルツの超音波発振制御を行うことで
超音波の非線形現象が幅広い周波数帯で発生するとともに
ダイナミックな超音波の変化を実現します。

液循環の流量・流速分布・・・を適切に設定することで
目的に合わせた、非線形現象を発生させることができます。

<<動画>>

https://youtu.be/glWfqnQyI0Q

https://youtu.be/WdACnNNV0yY

https://youtu.be/tFOenqyo7uk

https://youtu.be/9O2krcgXRIk

https://youtu.be/EaE296dCz6o

https://youtu.be/4jpEEy8yzlk

https://youtu.be/mFtPItaHuNE

***

https://youtu.be/CZxlkoQhdaw

https://youtu.be/O9nkPODVrY4

https://youtu.be/3EzonKbs_EQ

https://youtu.be/6rZVVMfg01U

https://youtu.be/lXMrmddNXXo

https://youtu.be/1fKyKd90JRg

https://youtu.be/pgO54mY7cFU

https://youtu.be/yfzzWgQmUYw

https://youtu.be/e85wAPOHlJA

上記の技術に関して、
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・によりトレードオフの関係が発生する場合があり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
非線形現象の制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
洗剤の使用や撹拌・・では、
通常の洗浄とは反対の設定を行う成功事例が多い傾向にあります)

超音波の伝播現象における「音響流」を利用する技術
http://ultrasonic-labo.com/?p=1410

<超音波のダイナミック制御技術>
http://ultrasonic-labo.com/?p=2301

オリジナル技術(液循環)
http://ultrasonic-labo.com/?p=7658

<超音波のダイナミックシステム:液循環制御技術>
http://ultrasonic-labo.com/?p=7425

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

*超音波とファインバブル資料

コストを下げて品質を改善した超音波洗浄機の事例
http://ultrasonic-labo.com/wp-content/uploads/44b5b12b07f104e6bfb9c495337cc0ac-1.pdf

超音波とファインバブル(マイクロバブル)による洗浄技術
http://ultrasonic-labo.com/wp-content/uploads/336c334bc64bb2c257afeda978ec9767.pdf

ファインバブルと超音波による、表面処理技術
http://ultrasonic-labo.com/wp-content/uploads/815f8d82b266d80c3e51c5e14714aa8c.pdf

超音波振動子の表面改質
http://ultrasonic-labo.com/wp-content/uploads/42acec116b84a6ff20ab904da7600269-1.pdf

マイクロバブル・ナノバブル制御による、樹脂・金属の表面改質
http://ultrasonic-labo.com/wp-content/uploads/be286d705105ef8b1bc8254d3968b8ee.pdf

脱気ファインバブル発生液循環システム追加の出張サービス
http://ultrasonic-labo.com/wp-content/uploads/e9ef2a2ec7d2e320a97835ce135d51ac.pdf

非線形現象の音圧測定解析に基づいた、超音波伝搬制御技術を開発
(超音波テスターによる<測定・解析・制御>の応用技術)

超音波システム研究所は、
超音波の発振制御による、表面弾性波の伝搬状態について
低周波と高周波の組み合わせによる
共振現象・非線形現象をコントロールする技術を開発しました。
新しい超音波伝搬部材(ステンレス線、チタン製ストロー・・)
の利用により、目的に合わせた効率の高い超音波利用が可能になります。

超音波テスターの音圧データの測定解析により
表面弾性波の複雑な変化を、
利用目的に合わせて、コントロールするシステム技術です。

実用的には、
複数(2種類)の超音波プローブによる
複数(2種類)の発振(スイープ発振、パルス発振)が
複雑な振動現象(オリジナル非線形共振現象)を発生させることで
高い音圧で高い周波数の伝搬状態、あるいは、
目的の固有振動数に合わせた低い周波数の伝搬状態を実現します。

特に、水槽やポンプ・・振動特性とメガヘルツ超音波の最適化により、
効率の高い超音波制御
(30W出力で、3000リットルの洗浄液に伝搬)を実現します。

ナノレベルの応用では、
1メガヘルツの超音波発振で、
100メガヘルツ以上の周波数変化を含めた
効率の高い超音波刺激によるナノ操作が実現しています。

この技術は、音圧(非線形現象)測定・解析に基づいて、
表面弾性波と超音波伝搬用具の音響特性・相互作用を利用した、
超音波のダイナミック制御システム技術です。

興味のある方は、メールでお問い合わせください

参考動画

https://youtu.be/GIHkrKNYotQ

https://youtu.be/S5dfGXFZECg

https://youtu.be/DpjJWSweivc

https://youtu.be/U85E7iTAWpw

https://youtu.be/S_i0ACcLZlQ

https://youtu.be/Wz681mrACvE

https://youtu.be/HsSv64IZ4SY

https://youtu.be/XLd7POFP0mg

https://youtu.be/2DPV_z1mU0Q

https://youtu.be/uFHuO0uBiII

https://youtu.be/ts3z6TCdCvo

https://youtu.be/Ei1tBhiFc_M

https://youtu.be/ufQMtDcB3wg

https://youtu.be/U19c40NBpbE

https://youtu.be/kjMftOQk8H8

https://youtu.be/nztfdGw1vBc

https://youtu.be/xK74eeTtOis

https://youtu.be/Cg45EE_IMn0

https://youtu.be/mcdq9X79IDQ

https://youtu.be/bWJNyZe_WQw

https://youtu.be/Pbexbhz4acY

https://youtu.be/HqwRBLioQUc

https://youtu.be/9g3DeLcnMWg

https://youtu.be/rFpwfTDu9Zc

https://youtu.be/RUvLAX9mTCI

https://youtu.be/TwH6yz6KWIM

https://youtu.be/nKwn1QcT5iQ

https://youtu.be/VphH_ZgZl78

https://youtu.be/nseV9LbUSHc

https://youtu.be/9McC1wl4DRM

https://youtu.be/_RrPeRcwOls

https://youtu.be/0zpg4cFjpCg

https://youtu.be/cDyJSYRumFA

https://youtu.be/pon6YWu8PJE

https://youtu.be/7SD5TE9EJMY

https://youtu.be/yE3xOvcVjsI


参考

「超音波の非線形現象」を利用する技術を開発
http://ultrasonic-labo.com/?p=1328

超音波実験写真(表面弾性波の応用)
http://ultrasonic-labo.com/?p=2005

超音波洗浄に関する非線形制御技術
http://ultrasonic-labo.com/?p=1497

超音波システム(音圧測定解析、発振制御)
http://ultrasonic-labo.com/?p=19422

超音波資料
http://ultrasonic-labo.com/?p=1765

超音波技術資料
http://ultrasonic-labo.com/?p=1905

超音波技術資料(アペルザカタログ)
http://ultrasonic-labo.com/?p=8496

オリジナル技術資料
http://ultrasonic-labo.com/?p=2098

オリジナル技術資料
http://ultrasonic-labo.com/?p=17379

コメントは停止中です。