通信の数学的理論を応用した超音波制御技術

通信の数学的理論を応用した超音波制御技術

IMG_7510

超音波システム研究所は、

 「通信の数学的理論」(クロード・E.シャノン)

超音波に応用した  超音波の制御技術を開発しました。

20120430ss

20120430

この技術は、

超音波の測定解析技術を利用して、

超音波の伝搬特性(ダイナミック特性)を、

通信理論のアンサンブル(エントロピー)

適応させるという具体的な方法です。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IMG_0751

これまでの  通信に関する「技術的な問題」とは異なり、

超音波現象に関する「意味的な問題」「効果の問題に対する、

技術的な応用研究として開発しました。

なお、超音波システム研究所の「超音波機器の評価技術」により、

この方法による、具体的な成果を確認しています。

詳細については  コンサルティング事業として、対応しています。

IMG_3247

特に、複数の異なる超音波振動子を利用するシステムにおいて

通常は、2桁以上異なる周波数の組み合わせが推奨されていますが

この技術を利用すると、低周波領域(1kHz-100kHz)の発振機を組み合わせることで

高調波(数メガヘルツ)のキャビテーション効果を、

低い周波数の振動が増大させることが可能になります。

さらに、相互作用として、低周波のキャビテーションに高調波の振動を追加する現象により

非線形現象の利用をコントロールすることが可能になります。

IMG_3195

これは、ロシアのテキストにある

キャビテーションの線形性・非線形性共振性・破裂性

液循環、水槽構造、発振制御・・・・で、

ダイナミックに制御するという、超音波システム研究所のオリジナル技術です

20151014b

参考動画

 http://youtu.be/23tX1Yvq4O8

 http://youtu.be/hNuG9EauqHo

IMG_7514

http://youtu.be/VMvijP757uw

http://youtu.be/5m8BvAGk33U

http://youtu.be/C1KLsRoQ-EA

http://youtu.be/F7TcnU-yreQ

http://youtu.be/HqiWWHDDh-g

http://youtu.be/Lz6ee7Xstps

http://youtu.be/0g1ofAVUcpM

http://youtu.be/-aQEwzk0b6o

http://youtu.be/HOmkkXinRkU

 

(シャノン)   「通信の数学的理論」より

メッセージの統計的性質は

  情報源の特徴によって  完全に定まる

という部分を

超音波伝搬状態の統計的性質は

  対象物の特徴(音響特性)によって  完全に定まる

と、応用(注)します

注:洗浄効果の確認、部品検査、・・・

超音波の発振制御技術を応用して

オリジナルの超音波プローブにより検討・確認しています  

参考

1)超音波洗浄器(基礎実験・確認)

超音波洗浄器の利用技術
http://ultrasonic-labo.com/?p=1318

超音波洗浄器の利用技術 No.2
http://ultrasonic-labo.com/?p=1060

IMG_1170

超音波洗浄器(42kHz)による<メガヘルツの超音波洗浄>技術を開発
http://ultrasonic-labo.com/?p=1879

2)超音波利用(応用技術・ノウハウ)

超音波振動子の設置方法による、超音波制御技術
http://ultrasonic-labo.com/?p=1487

推奨する「超音波(発振機、振動子)」
http://ultrasonic-labo.com/?p=1798

超音波専用水槽の設計・製造技術を開発
http://ultrasonic-labo.com/?p=1439

IMG_9900

超音波のダイナミック制御技術を開発
http://ultrasonic-labo.com/?p=2015

超音波洗浄システムを最適化する方法
http://ultrasonic-labo.com/?p=2710

「超音波の非線形現象」を利用する技術を開発
http://ultrasonic-labo.com/?p=1328

3)超音波測定(音圧測定・解析・評価)

音圧測定装置(超音波テスター)の標準タイプ
http://ultrasonic-labo.com/?p=1722

音圧測定装置(超音波テスター)の特別タイプ
http://ultrasonic-labo.com/?p=1736

IMG_1648

超音波計測の特別システムをオーダーメイド対応
http://ultrasonic-labo.com/?p=1972

超音波機器の<計測・解析・評価>(出張)サービス
http://ultrasonic-labo.com/?p=1934

超音波<計測・解析>事例
http://ultrasonic-labo.com/?p=1705

超音波の統計処理(基礎解析データ

 Ultrasonic analysis

http://youtu.be/2AD8jn-OeLc

http://youtu.be/yHe050kvbRY

http://youtu.be/ll3702qSetw

http://youtu.be/kYFW4nPivuc

IMG_5726

http://youtu.be/y1WDzB0oS2s

http://youtu.be/c92O7tqOktg

http://youtu.be/VOcOzyrT4uA

http://youtu.be/GeXtGWUgEhU

http://youtu.be/YoiT5_5G6l0

超音波データの統計処理

多変量自己回帰モデル解析) 

http://youtu.be/30WSjkiBhbI

http://youtu.be/q9caJGWKkYk

http://youtu.be/utECtIBKBY4

http://youtu.be/tq53AIjyEA4

IMG_4027

http://youtu.be/U4Dk6hSHF1E

http://youtu.be/8ln7ux4FaPk

http://youtu.be/4Idfb5VQvVA

20111022a

http://youtu.be/hcQ49j2cKew

http://youtu.be/hR9bkqSNRec

http://youtu.be/xJ-nbhfEQQo

IMG_8601

20120205a

mov304f

MVIzo2802

音色と超音波(新しい超音波の見方です

 http://ultrasonic-labo.com/?p=1082

20120222b

MVI_0541

MVI_235722

モノイドの圏

 http://ultrasonic-labo.com/?p=1311

物の動きを読む

 http://ultrasonic-labo.com/?p=1074

aaa

振動子の設置方法による、超音波制御事例

http://youtu.be/8yvYOnUkdMw

http://youtu.be/sVboyzvNY-s

http://youtu.be/ev5LTW43VC0

http://youtu.be/qhsGLfKxdE4

http://youtu.be/pY0hlwXCin0

http://youtu.be/-cy-CJMF_ZM

http://youtu.be/ZA5oNTT3YxY

http://youtu.be/0BfStG4gq-A

http://youtu.be/PEP2A2L_bAE

http://youtu.be/Oc1PiM00Z9U

http://youtu.be/XyacKifLj5s

http://youtu.be/9TBMqqN6uYs

http://youtu.be/9ulD56DvOEE

http://youtu.be/WUP1lo5MQDQ

http://youtu.be/HlefimcvWX4

http://youtu.be/fLIPJIbnH8I

http://youtu.be/9VcI9Ph0jUM

http://youtu.be/iOYQ1UnsESw

 

http://youtu.be/IzrAE6neOLY

http://youtu.be/arS4HinUliM

http://youtu.be/Zye7eFrXXXc

http://youtu.be/trtwwPxVTCk

http://youtu.be/yvMucD8YB9U

http://youtu.be/3oEcFd1q7qE

http://youtu.be/RnzDQ6DFCbA

http://youtu.be/EYsjVOJhPd4

http://youtu.be/3HDLOTxkpmQ

<統計的な考え方>を利用した「超音波技術」

http://youtu.be/yg4Dz7FoMng

超音波プローブ実験(表面検査技術)

http://youtu.be/Te_ACjMjyMI

 

<超音波のダイナミックシステム>

http://youtu.be/RF7wuI6juGY

<<表面の音響特性>>

http://youtu.be/tYQey1yEHMc

http://youtu.be/VJSnrJVbRqQ

http://youtu.be/YnuaYTyPoRQ

http://youtu.be/odJhm8iyxwk

http://youtu.be/94FJTY4OU2U

http://youtu.be/YREQFlvE3BM

http://youtu.be/EQHt-Ye1QuY

http://youtu.be/_jRTEmz802o

http://youtu.be/_SkeYvO_Buo

http://youtu.be/ZtHYhsMwOMw

http://youtu.be/mYEDrKWT1pc

http://youtu.be/jhsLv2liAWo

http://youtu.be/R7nm0XliBSg

http://youtu.be/Sit4N5-OfDs

http://youtu.be/_Y4axvvT00U

http://youtu.be/gGbQtEdEbJ4

http://youtu.be/Dc1EEU2zMgA

参考(投稿動画)

https://youtu.be/AGH4FmyJ8gc

https://youtu.be/j5SW7ZtBE64

https://youtu.be/XgOnX-ai46A

https://youtu.be/ROdroHqeKAk

https://youtu.be/13BNLsQTmMg

https://youtu.be/HMtRXeCqddI

https://youtu.be/UgxsLUwu1Zg

https://youtu.be/EzkW_x6tXgQ

https://youtu.be/q_m6ghYODNQ

https://youtu.be/EgXP1xOA3oM

https://youtu.be/oCoN_g6qV-U

https://youtu.be/WT3zDAnpyL0

https://youtu.be/vRA8TL-SBCA

https://youtu.be/ZCMws_5HvJw

IMG_84942

IMG_8496

20150816a

20150726d

IMG_5660

IMG_5654

20100328a

20100710k

a4

IMG_3990

224

IMG_040900

20150512a

IMG_0569

20140728c5

20150508aa

IMG_8675

aaa1001

IMG_8721s

20150321a

az004

az003

20150315f

az001

az002

IMG_6779

20150315e

20150315d

***

超音波による金属・樹脂の表面改質技術
http://ultrasonic-labo.com/?p=1004

超音波の「音響流」制御による「表面改質技術」
http://ultrasonic-labo.com/?p=2047

「超音波の非線形現象」を目的に合わせてコントロールする技術
http://ultrasonic-labo.com/?p=2843

<脱気・マイクロバブル発生液循環システム>
http://ultrasonic-labo.com/?p=7658

「脱気・マイクロバブル発生装置」を利用した超音波システム
http://ultrasonic-labo.com/?p=1996

超音波とマイクロバブルによる表面改質(応力緩和)技術
http://ultrasonic-labo.com/?p=5413

樹脂・金属・セラミック・ガラス・・の表面改質に関する書籍
http://ultrasonic-labo.com/?p=7530

超音波による「金属部品のエッジ処理」技術
http://ultrasonic-labo.com/?p=2894

IMG_6716

3種類の異なる周波数の「超音波振動子」を利用する技術
http://ultrasonic-labo.com/?p=3815

2種類の異なる「超音波振動子」を同時に照射するシステム
http://ultrasonic-labo.com/?p=2450

超音波の洗浄・攪拌・加工に関する「論理モデル」
http://ultrasonic-labo.com/?p=3963

オリジナル超音波技術によるビジネス対応
http://ultrasonic-labo.com/?p=9232

超音波洗浄システムの製造販売
http://ultrasonic-labo.com/?p=7378

超音波測定解析の推奨システムを製造販売
http://ultrasonic-labo.com/?p=1972

超音波洗浄機の<計測・解析・評価>(出張)サービス
http://ultrasonic-labo.com/?p=1934

IMG_1465

超音波テスターNA(推奨タイプ)
http://ultrasonic-labo.com/wp-content/uploads/06d8809b57609380ea2fdcc654dfda68.pdf

超音波洗浄資料(抜粋)
http://ultrasonic-labo.com/wp-content/uploads/4b10b044100130815368b1dc57220eda.pdf

洗浄システム(推奨)
http://ultrasonic-labo.com/wp-content/uploads/52cc97c1a13fd294f53af526edd69990.pdf

20150827hh

超音波プローブの<発振制御>技術
http://ultrasonic-labo.com/?p=1590

超音波プローブによる
<メガヘルツの超音波発振制御>技術
http://ultrasonic-labo.com/?p=1811

超音波<発振制御>技術
http://ultrasonic-labo.com/?p=5267

超音波測定解析の推奨システムを製造販売
http://ultrasonic-labo.com/?p=1972

超音波発振・計測・解析システム(超音波テスター)
http://ultrasonic-labo.com/?p=7662

超音波の伝搬状態を利用した部品検査技術
http://ultrasonic-labo.com/?p=3842

20140122A

オリジナル超音波システムの開発技術
http://ultrasonic-labo.com/?p=1546

表面弾性波の利用技術
http://ultrasonic-labo.com/?p=7665

通信の数学的理論
http://ultrasonic-labo.com/?p=1350

超音波(論理モデルに関する)研究開発資料
http://ultrasonic-labo.com/?p=1716

物の動きを読む(統計数理)
http://ultrasonic-labo.com/?p=1074

オリジナル超音波技術によるビジネス対応
http://ultrasonic-labo.com/?p=9232

20100402b

20100430b2

「シャノンの第一定理に関する経験談」

1) テーマ
多くの社員に必要であり、今後役に立つ事柄、
あるいは、IT関連の基礎知識として
「シャノンの第一定理が、具体的に経験上で役に立つ」
と言う話をしたいと思います

1-1)基本システムの考察(注1)に関する
モデル作成として役に立つ
1-2)データとノイズに関する基礎事項として役に立つ
(ルーチンワーク的な開発業務の中では
必要性を理解しにくいと思いますが、
オリジナリティの高い、新製品の研究開発の
立場で考えると、
研究の視点(注2)としてとして
大変有効だと思います

注1:例 システム開発に関するオブジェクト
(アルゴリズム 等)の整合性・体系化

注2:例 機械振動・電気ノイズ・プログラム
バグの原因解析

2) 基礎知識

理論と歴史の流れを説明します

* サイバネティクス(フィードバック)から
情報の単位としてビットが基準になるまで

* 「シャノンの通信モデル
(情報源) -> 送信機(符号化) -> 通信路(外乱・ノイズ含む) 

       -> 受信機(複合化) -> (目的位置)

* 情報容量:H=log n(ハートレイ 1928年)
n:1つの系で区別される状態の数(単純化で2にする)
対数の底は、情報を測定する単位の選択とする
(J.W.テューキー)
すなわち、ビットは2者択一の概念に基づくもので、
2つから1つの選択では1ビット、
4つから1つでは2ビット
* シャノンによる情報量の(確率概念による)定義
事前確率がわかっているとき、
1つの通報を記憶するのに必要で最小な情報容量が、
その情報のもつ情報量である(シャノン 1948年)

通報:情報源が発するもの
情報:通報に含まれる
(情報量:情報源が発する通報の集合量の
確率統計的あつかいによる数学的な公式による量)

ポイント:信号の持つ意味の取り扱いをしない

3) 基礎知識の理解

「基礎知識を深めると重要な定理や法則が理解できる」展開を

説明します

「シャノンの第一定理」
情報とエントロピーの関係
(情報が増えるとエントロピーは減少する)
エントロピー:無記憶情報源のシンボル当たりの平均情報量
(情報量*確率の総和)
無記憶情報源<->マルコフ情報源
(その情報以前の有限個(m)の情報に影響される
情報源:m重マルコフ情報源)
情報と確率過程の関係->エルゴード的->
確立の再定義->統計処理->・・

4) 理解から応用創造

経験と実例を説明します
4-1)論理は用意されていない  ?である
:データとノイズの関係の話
4-2)考えなければならない:どこから?
何を考えるか?
経路とノイズとデータの特定
(例 ロボットの動作、デジタル解析のデータ
:デジタルアナライザー、プログラム言語のコンパイラー、システムの取り扱い方法)
ロボットの動作データ(注1 機械・電気・ソフト)と動作測定によるデータの検討に関する
通信モデルの利用(通信モデルに対する第一定理の保証)

注1:機械(特性) 伸び・たわみ・疲労・・・
電気(信号) 電気的な性質・応答特性・・・
ソフト 制御のアルゴリズム・データ構造・チューニング処理・・・

4-3)論理モデルをつくる:現象との違いを考察する

解析事例(振動解析 プログラムのバグ解析
人間と言う要因の検討)
振動と言う現象(全体)と測定(ポイント)による
データの論理的考察
時間的変化に対する、
条件の設定と統計やシュミレーション等の解析方法の考察

4-4)論理モデルの限界と現象を考察する

調整事例(自動データ作成、モータ制御:学習機能のプログラム検証)
文字のデータと**装置の構造による制御データとソフトウェアの変換処理に関して、
*の回転や*の速度変化による文字データを制御構造データに置き換えることを可能にする
手順とモデルによる実例の紹介)
(X/Y/Z/回転/速度/加速度とパラメータを増やすと
トータルノイズが大きくなってしまう->第一定理)

4-5)その現象に対するオリジナルな論理を作成する

新規開発事例(材質、特性、一般理論の組み合わせと現象:総合力)

理論やデータでは突破できない (注:基礎知識の理解は必要である)

感触やイメージが必要である

注:プログラムはタイプして、モノには触れて感じて見るなど
**装置の場合、筆記用具の性質と機械構造の関係にたいする考察
自動車用ロボットの場合、部品の目的に対する様々な性質の考察

プログラム言語の場合、

言語と異なる種類の言語の考察や、メタ設計による設計のコンセプトを検証する

ポンプの場合、ポンプの原理に関する基本的な論理考察
(ポンプは完成度が高い部品であると考えてしまいがちなので)

他 リアルタイム処理に対する工夫、画像処理の学習機能の応用、、、、

5) 設計思想への発展

オリジナルな理論を忠実に設計し、一つの製品(システム)にまとめあげ
ることは、
その理論(人)による思想(identity)にまで広がっていきます
そして思想からモデル(システム)の修正や変更が行われ、繰り返す中で
発展していくように思います
(極端な例として、「for文は嫌いだから使用しない」
これも思想と捕らえることが出来ます:形から入る方法もあるという例です)
このような観点でモノを見ると、

良い製品、良い設計にふれることの大切さが理解できると思います

私は、これが設計する力だと思います

6) まとめ

* 応用できれば知識は技術力として役に立つ
* プログラム言語や環境の知識も応用できるところまで高めなければいけない
* そのためには、クリアすべき基礎知識がある

結局、好きな部分は基礎知識がわかるまで学習する必要がある

(あるいは、実際に製品に組み込みと、

理解不足部分が問題になり苦労して身につけることになる)

最終的には、設計思想を形成し深めていくことが本質だと思います
(そのために観察することと工夫することの重要性をまとめにします
数式や統計処理は有効ですが、各処理のそれぞれの段階も

技術的説明を行う必要があることの重要性を考えてもらいたいと考えています)

IMG_9319

シャノンのジャグリング定理を応用した「超音波制御」方法 

シャノンのジャグリング定理を応用した「超音波制御」方法を開発し
コンサルティング提案・実施対応を行っています。

超音波照射による現象を 安定して効率よく利用するためには

超音波発振機や振動子以外の条件に関する 検討や開発も必要です

水槽や液循環・・・の影響も大きいのですが

現在使用中の超音波を効率用利用するための

単純ですが大きな改善が可能な方法を紹介します

( 具体例や実績は多数あります

20cc-1800リットルまで対応実績があります )

IMG_9356

この制御は簡単で、非常に効率が高いので是非利用してください

省エネルギーにもなります、
広く普及させたいと考えています 特許申請は行いません

(インターネットで公開し類似の特許が登録されないようにしています)

詳細については「 超音波システム研究所 」にお問い合わせください

単純ですが、個別の要因(水槽、伝搬対象物、・・)により適切な設定が必要です

<制御について>

各種データの時系列変化の様子を解析・評価して、
時間で移動するボールのジャグリング状態に相当する
超音波伝搬現象の「サイクル」と、「影響範囲」を見つけます

この関係性からボールN個のジャグリング状態を設定して制御を行うと、
システムの状態に適した制御となり、効率の高い超音波システムとなります

IMG_8489

<< シャノンのジャグリング定理の応用 >>

注:JUGGLING THEOREM proposed by Claude E. Shannon

シャノンのジャグリング定理

( F + D ) * H = ( V + D ) * N

F : ボールの滞空時間(Flight time)
D : 手中にある時間(Dwelling time)
H : 手の数(Hands)
V : 手が空っぽの時間(Vacant time)
N : ボールの数(Number of balls)

<< 応用 >>

F : 超音波の発振・出力時間
D : 循環ポンプの運転時間
H : 基本サイクル(キャビテーション・加速度のピークの発生する)
V : 脱気(マイクロバブル発生液循環)装置の運転時間
N : 超音波(発振)周波数の異なる振動子の数

20150823w
参考動画

https://youtu.be/VnbH1zWWZ1M

https://youtu.be/uM0s2MSyfq8

https://youtu.be/iwPgoTHl8WI

https://youtu.be/_xa58C7JJfU

https://youtu.be/S8IaNmz0lVU

https://youtu.be/XjiWO2OhWmU

https://youtu.be/yhS4WdZZ2vQ

https://youtu.be/QFQ8q6lagFQ

https://youtu.be/0Y2p7ene4d4

https://youtu.be/yeiqDsUXmUQ

20150823e

超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した「超音波制御」方法
http://ultrasonic-labo.com/?p=1753

IMG_9356

<<参考動画>>

https://youtu.be/ziDbrn706nQ

https://youtu.be/y_-0GW3oSAw

https://youtu.be/yb0YpzlrKic

https://youtu.be/KzeoD0JvtA8

https://youtu.be/al1l0Ry-GBg

https://youtu.be/OV8XQKDiSDw

IMG_0507

https://youtu.be/sW71Hp0puII

https://youtu.be/B1m3gCacC0M

https://youtu.be/vBRRPejPK3A

https://youtu.be/26C_tvy03qo

https://youtu.be/H73fdg-PdYE

https://youtu.be/AMaJlCd552Y

IMG_0708

https://youtu.be/VE0ycy7rtoA

https://youtu.be/bFy61cGCMFg

https://youtu.be/-iKF1nLITAg

https://youtu.be/8JxHRm99ezc

https://youtu.be/UobF4WII5gw

https://youtu.be/HhzcQs–vzY

IMG_0695

https://youtu.be/avhCsm8R6Kc

https://youtu.be/iLTOhHVovm0

https://youtu.be/dMBlTR-sw1c

https://youtu.be/XTWzu_7kR4c

https://youtu.be/wnvf2aCtM_A

IMG_7225

https://youtu.be/a8wepaYAGZE

https://youtu.be/n6UKWeXmqhU

https://youtu.be/60XlWy8fozg

https://youtu.be/le_OfgK5iW0

https://youtu.be/JjD3L0mo8H8

https://youtu.be/OMdfxXdeF4o

https://youtu.be/5Fnjqlm4h_M

https://youtu.be/AXZbbM_W4dw

MVI_0541

オリジナル超音波システムの開発技術
http://ultrasonic-labo.com/?p=1546

表面弾性波の利用技術
http://ultrasonic-labo.com/?p=7665

オリジナル超音波技術によるビジネス対応
http://ultrasonic-labo.com/?p=9232

image49

 

コメントは停止中です。